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Joiner WM, Smith MA. Long-term retention explained by a model
of short-term learning in the adaptive control of reaching. J Neuro-
physiol 100: 2948–2955, 2008. First published September 10, 2008;
doi:10.1152/jn.90706.2008. Extensive theoretical, psychophysical,
and neurobiological work has focused on the mechanisms by which
short-term learning develops into long-term memory. Better under-
standing of these mechanisms may lead to the ability to improve the
efficiency of training procedures. A key phenomenon in the formation
of long-term memory is the effect of over learning on retention—
discovered by Ebbinghaus in 1885: when the initial training period in
a task is prolonged even beyond what is necessary for good immediate
recall, long-term retention improves. Although this over learning
effect has received considerable attention as a phenomenon in psy-
chology research, the mechanisms governing this process are not well
understood, and the ability to predict the benefit conveyed by varying
degrees of over learning does not yet exist. Here we studied the
relationship between the duration of an initial training period and the
amount of retention 24 h later for the adaptation of human reaching
arm movements to a novel force environment. We show that in this
motor adaptation task, the amount of long-term retention is predicted
not by the overall performance level achieved during the training
period but rather by the level of a specific component process in a
multi-rate model of short-term memory formation. These findings
indicate that while multiple learning processes determine the ability to
learn a motor adaptation, only one provides a gateway to long-term
memory formation. Understanding the dynamics of this key learning
process may allow for the rational design of training and rehabilitation
paradigms that maximize the long-term benefit of each session.

I N T R O D U C T I O N

The relationship between the properties of a training session
and the strength and duration of the resultant memory trace has
been a focus of psychological and neurobiological research
since the late 1800s (Ebbinghaus 1913). Exposure to a few
training stimuli can lead to long-lasting memories in organisms
with even the simplest of nervous systems such as nematodes
(Rankin et al. 1990), Drosophila (DeZazzo and Tully 1995),
and mollusks (Carew et al. 1972). Nevertheless a clear and
comprehensive understanding of the processes underlying
long-term memory formation has not yet been achieved. Better
understanding of these processes may lead to a better under-
standing of disorders of learning and memory and to the
rational design of optimally efficient training paradigms and
improved rehabilitation procedures.

A key finding from Ebbinghaus’s pioneering human work
(Ebbinghaus 1913) that has received considerable subsequent

attention in the psychology literature has been termed the over
learning effect (Krueger 1929; Luh 1922). This effect charac-
terizes a fundamental property in the relationship between the
duration of a training session and the level of subsequent
retention: after reaching a high level of performance during an
initial training period, additional training that has little effect
on performance can lead to substantial improvements in long-
term retention. For example, if reaching a high level of per-
formance (typically set as 1 error-free trial, although this does
not imply that the subject achieved perfect performance in
subsequent trials) required 10 trials, 50% over learning re-
quires performing an additional 5 trials. Initial studies focused
on verbal recall (memorizing lists of syllables or nouns)
(Krueger 1929; Luh 1922) on which most of the work to date
has been done (for a review, Driskell et al. 1992). However, the
over learning effect has been demonstrated on a wide variety of
learning paradigms including motor skill learning (e.g., disas-
sembling and assembling a device) (Melnick 1971; Melnick
et al. 1972; Schendel and Hagman 1982, 1991). Tests for
retention given after a set time interval posttraining (for exam-
ple, 24 h) typically revealed that the greater the degree of over
learning, the greater the retention of the task (Craig et al. 1972;
Driskell et al. 1992; Postman 1962; Rohrer et al. 2005).
Despite the abundance of research, previous models of over
learning (Craig et al. 1972; Schendel and Hagman 1991)
predict neither the rate nor the maximal amount of improve-
ment in retention conferred by increased training.

The study of various motor adaptations has been a useful
model for understanding the mechanisms underlying motor
memory formation. A motor adaptation is a change in motor
output on a task made after repeated exposure to an environ-
mental perturbation. Examples include saccade adaptation
(McLaughlin 1967), visual rotation (Krakauer and Shadmehr
2006; Krakauer et al. 2000), and dynamic force-field adapta-
tion (Shadmehr and Mussa-Ivaldi 1994; Smith et al. 2006;
Thoroughman and Shadmehr 2000). In the last several years,
computational modeling methods have been applied to help
produce an increasingly quantitative understanding of the pro-
gression (Scheidt et al. 2001; Smith et al. 2006; Thoroughman
and Shadmehr 2000) and internal representation (Bhushan and
Shadmehr 1999; Donchin et al. 2003; Krakauer et al. 2000;
Thoroughman and Shadmehr 2000) of the motor adaptation
process. Although it has been shown that motor adaptation
training can lead to the formation of enduring motor memories
(Alahyane and Pelisson 2005; Brashers-Krug et al. 1996;
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Krakauer et al. 1999) and that the passage of time is important
in consolidating these memories (Krakauer and Shadmehr
2006; Overduin et al. 2006) surprisingly little work has ex-
plored how the characteristics of an initial training period
influence the ability to retain newly learned motor adaptations.
One such study (Yin and Kitazawa 2001) demonstrated a clear
over learning effect for prism adaptation in monkeys: training
for 50 or 250 trials produced substantial initial learning but no
clear 24-h retention, whereas 500 initial learning trials pro-
duced clear retention despite similar initial learning perfor-
mance.

We recently showed that interactions between two distinct
processes underlie the short-term motor adaptation that sub-
jects experience during a single training session (Smith et al.
2006) and that interactions between these two processes ex-
plain several phenomena in motor adaptation that were previ-
ously considered to be unrelated such as savings, interference,
and spontaneous recovery. In this model, one learning process
rapidly responds to error but has poor retention, whereas
another process responds slowly to error but retains informa-
tion well from one trial to the next. Can the ability to parse
learning into these two components allow us to better under-
stand long-term memory formation? Here we studied how the
passage of time interacts with each of these learning processes
and whether these two processes differentially contribute to the
formation of long-term motor memories. We hypothesize that
the slower learning process contributes to long-term retention
more strongly than the faster process, resulting in not only
greater long-term retention for subjects trained for longer
periods, but disproportionately so with respect to the amount of
adaptation achieved. That is, as adaptation progresses improve-
ments in the amount of retention outpace improvements in the
amount of learning.

M E T H O D S

Participants

Forty-eight healthy right-handed participants (mean age: 27 yr)
without known neurological impairment were recruited. All partici-
pants gave informed consent and the experimental protocols were
approved by the Harvard University Committee on Human Subjects
Research.

Task

The experimental paradigm used a dynamic force-field adaptation
task (Scheidt et al. 2000; Shadmehr and Mussa-Ivaldi 1994; Smith
et al. 2006) in which each subject was trained to move his or her
dominant hand to targets in the horizontal plane while grasping a
robot manipulandum (Fig. 1A). The manipulandum measured hand
position, velocity, and force, and its motors were used to dynamically
apply force patterns to the hand, all of which were updated at a
sampling rate of 200 Hz. The position of the hand was displayed as a
small round cursor (3 mm) on a vertically oriented computer monitor
in front of the participant (refresh rate of 75 Hz). Participants reached
to circular targets, 1 cm diam, that were spaced 10 cm from each
starting position. We instructed participants to “make quick move-
ments to the targets.” In addition, subjects were told that the reaction
time was not important—they could wait as long as they wished after
target appearance before starting each movement—but when ready,
they were to move in a rapid motion toward each target. The endpoint
of each movement was used as the starting point for the subsequent
movement, and midline movements were made in two target direc-

tions—toward and away from the chest of each participant. Data from
both movement directions were analyzed in this study.

Three trial types were employed in this study: null, force-field, and
error-clamp trials. Null trials were used for initial practice. In these
trials the robot motors were disabled so that they did not produce
force. During force-field trials, the motors were used to produce a
force pattern on the hand that could perturb hand motion. The forces
were proportional in magnitude and perpendicular in direction to the
velocity of hand motion (Fig. 1A). The relationship between the force
(f) and velocity (ẋ) vectors was determined by the 2 � 2 matrix B via
the relationship f � Bẋ as shown explicitly below

� fx

fy
� � � B11 B12

B21 B22
� � � ẋx

ẋy
� where B � � B11 B12

B21 B22
�

� � 0 15
� 15 0 �N/�m/s�

During error-clamp trials, the robot motors were used to constrain
movements in a straight line toward the target by effectively coun-
teracting any motion perpendicular to the target direction (Scheidt
et al. 2000; Smith et al. 2006). This was achieved by applying a stiff
one-dimensional spring (6 kN/m) and damper [150 N/(m/s)] in the
axis perpendicular to the target direction. In these trials, lateral errors
(i.e., errors aligned with the direction of the force-field perturbation)
were kept very small so that the lateral force patterns produced by
subjects due to training-induced predictive compensation of the force-
field could be measured independently of feedback responses driven
by lateral errors. Although we could not achieve a perfect error clamp,
perpendicular displacement from a straight line to the target was held
to �0.6 mm and averaged �0.2 mm in magnitude.

Except for differences in the duration of the initial training period
and the time interval for retention testing, all participants followed the
same basic experimental protocol (Fig. 1B). There was a baseline
block of trials, followed immediately by a variable-length training
block which was in turn followed by a retention block either 5 min or
24 h later. All groups performed the same baseline block consisting of
150 trials in each of the two target directions. The first 50 of these
trials in each direction were null trials (robot motors turned off), and
in the last 100 of these baseline trials, error-clamp measurement trials
were randomly applied �20% of time (18 error-clamp and 82 null
trials in the forward direction; 19 error-clamp and 81 null trials in the
backward direction) to provide baseline estimates of the lateral force
forces. The force patterns associated with the error-clamp trials in this
block were used as a baseline for estimating learning-related changes
in force-patterns during the subsequent task epochs. The first group of
participants (n � 10), designated 160L24 (160 trial learning session –
24 h retest), performed 160 training trials in each target direction in a
clockwise curl force field. Forty error-clamp trials were randomly
interspersed among these training trials (20% of the 200 total trials) to
provide estimates of the learned feedforward changes in lateral force
profiles. The second subject group (n � 10), 160L0, performed the
same experiment as the 160L24 group without the 24 h retest delay.
This group was tested for retention after a 5-min delay. The last three
subject groups, 11L24 (n � 8), 30L24 (n � 10), and 103L24 (n � 10)
were identical to the 160L24 group (24-h retest delay) except that the
learning phase was stopped after 11, 30, and 103 force-field trails
rather than 160. Four, 7, and 25 error-clamp trials were interspersed
among the force-field trials during the training period for these groups,
respectively, corresponding to a train period durations of 15, 37, and
128 total trials. Retention of learning was determined using a series of
consecutive error-clamp trials. The first two of these trials were used
for the analysis presented here, but very similar results were obtained
using the first one to five trials.
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Analysis of force profiles

Because the force-field perturbations applied during this experi-
ment consisted of force patterns perpendicular to the direction of
motion, we focused our analysis on the lateral (perpendicular) force
profiles that participants generated during movement. In general,
lateral force could reflect an adaptive compensation of expected
lateral force or an on-line corrective response to errors detected during
the course of movement. Specifically, we looked at the progression of
lateral force profiles during error-clamp trials in the null, initial
learning, and error-clamp blocks of the experiment. During these
trials, lateral errors were kept small (�0.6 mm), so lateral force
profiles essentially reflected adaptive compensation of the force-field
perturbations. Because full compensation of the force-field perturba-
tion on a particular trial (i.e., the ideal force profile) required a lateral
force profile proportional to the velocity profile on that same trial (and
this velocity profile varied from 1 trial to another), we assessed the
amount of adaptation on each error-clamp trial by computing a
force-field compensation factor found by linear regression of the ideal
lateral force profile on each error-clamp trial (the force pattern
required for full force-field compensation on that trial) onto the
baseline-subtracted lateral force profile that was actually produced.
This entails finding the regression coefficients (K0 and K1) that would
minimize (in a least-squares sense) the error [�(t)] in the fit

FACTUAL�t� � K1 FIDEAL�t� � K0 � ��t�

The K1 regression coefficient represents the sensitivity of the actual
human-produced force pattern to the ideal compensatory force pattern.
This quantity characterizes the overall amount of force-field compen-
sation in a given trial (Smith et al. 2006) and serves as our learning
metric which we refer to as the adaptation coefficient. If the applied
force and the desired force perfectly coincide, this adaptation coef-
ficient is 1, if they are directly opposed, it is �1, and if they are
unrelated it will be zero. This regression procedure is illustrated in the
first two panels of Fig. 2. Figure 2A shows FACTUAL(t) and FIDEAL(t)
plotted against time for several selected error-clamp trials, whereas B
shows these quantities plotted against one another along with the best-fit
straight line having a slope of K1 and an offset of K0.

Computational modeling

We used the learning rules for the multi-rate learning model
presented in Smith et al. (2006) along with the error equations shown
in the following text to iteratively compute the time course of
adaptation for the simulated experiment.

Perturbation (force-field) trials

e�n� � f �n� � x�n�

BA Null Trials 

E

Initial Learning
(11,30,103, or 160 Trials)

24-Hour or 
5-Minute BreakBaseline 

Period
Test for Retention 
of Initial Learning

Experimental Protocol 

Experimental Setup

Target

C DForce-Field Trials Error-Clamp Trials 

FIG. 1. Illustration of experimental para-
digm. A: sketch of a participant holding the
robot manipuladum. B–D: illustrations of
null, force-field, and error-clamp trials. In
B, the red curves illustrate the force applied
by the robot arm during a force-field trial.
Applied forces were a linear function of hand
velocity: f � Bẋ (see METHODS). The cyan
curves show the ideal compensatory force.
The blue and green curves represent the
force patterns produced on selected trials
early and late in the force-field training ep-
och, respectively. E: diagram of the experi-
mental paradigm. Subjects first completed a
set of baseline trials without perturbing
forces. Next, the subjects were divided into 5
different training groups: 1 group each com-
pleted 11, 30, or 103 training trials and 2
groups completed 160 trials. Following the
training period, the subjects were tested for
retention after a delay of either 5 min (1 of
the 160 trial training groups) or 24 h (all
other groups).
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Error clamp trials

f �n� � x�n� 3 e�n� � 0

e(n)—error on trial n
f (n)—strength of force-field disturbance on trial n
x(n)—state of learned motor output on trial n
Multi-rate learning model (Smith et al. 2006)

xf �n � 1� � Af � xf�n� � Bf � e�n�

xs�n � 1� � As � xs�n� � Bs � e�n�

Bf � Bs, As � Af, x�n� � xf�n� � xs�n�

xf (n), xs(n)—Internal states that represent the contributions of the
fast and slow learning processes to net motor output [x(n)].

Bf , Bs—learning rates for the fast and slow learning processes.
Af , As—retention factors for the fast and slow learning processes.
Note that since only a single force-field magnitude was used for all

simulations, we normalized by the perturbation magnitude, i.e., the
presence of a force-field on trial n was represented by f (n) � 1.
Therefore the values of xf(n) and xs(n) that we represent are intrinsi-

cally normalized so that they represent the fraction of the force-field
environment that has been learned. For the simulations of multi-rate
model presented in this paper, the model parameters were derived
from a least-squares fit to the initial learning data shown in Fig. 2C.
These parameters were: Af � 0.85, As � 0.998, Bf � 0.11, and Bs �
0.021. These parameters differed from those used in Smith et al.
(2006); however, we found that these differences were not meaningful
for the current study. A detailed comparison of the different model
parameter estimates and their consequences is given in the supple-
mentary materials.1

The mulit-rate model was used to predict how the 24-h retention
level should vary with the duration of the initial training period if the
slow learning process, the fast learning process, or both directly
contributed to 24-h retention. Furthermore, the model predictions
shown in Figs. 3 and 4C are not fits to the 24-h retention data. Instead
a single scaling factor representing the maximum retention level was
used to scale each of the model-predicted slow process, fast process
and net adaptation levels to match the experimental data for only
the 160L24 group. This enabled the comparison between the
retention patterns in the experimental data and the model predic-

1 The online version of this article contains supplemental data.
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FIG. 2. Characterization of force-field adaptation. A: lateral
force profiles produced by subjects at various time points into
the training block (trials 4, 12, and 191) are shown as thick lines
These force profiles are averaged across all subjects for whom
data were available and were measured on error-clamp trials.
These human-produced force profiles can be compared with the
ideal lateral force profiles (thin lines)—i.e., the force patterns
that would have been necessary to fully compensate the force-
field had it been applied. B: illustration of how adaptation
coefficients were computed. The data from A are replotted with
the actual human-produced force profile plotted against the
ideal force profiles. Adaptation coefficients correspond to the
slopes of the regression lines shown. C: time course of adapta-
tion during the null and initial learning session for all 5 groups.
The adaptation coefficient represents linear regression of the
ideal compensatory force profiles onto the actual force profiles
produced by human subjects during error-clamp measurement
trials. Note the rapid initial adaptation during the 1st 10 trials
followed by an extended period of slower improvement.
D: average force profiles measured during error-clamp trials at the
end of the training period for all 5 groups. The solid black trace
represents the ideal force required to perfectly counteract the
robot-produced force (dotted black trace). E: average force profiles
measured during error-clamp trials after a 5-min or 24-h posttrain-
ing delay.
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tions for the other subject groups, i.e., to what extent was the 24-h
retention data proportional to the constituents of the multi-rate
learning model. Note that the solid curves in Fig. 3 represent the
unscaled model outputs, and the dotted curves represent the scaled
predictions.

R E S U L T S

We assessed the relationship between initial learning and
long-term retention on a force-field adaptation task (Scheidt
et al. 2000; Shadmehr and Mussa-Ivaldi 1994; Smith et al.
2006) (see METHODS and Fig. 1 for a description) in which five
groups of subjects were tested for retention after various

amounts of training. Four of the groups (11L24, 30L24,
103L24, and 160L24, where 11L24 signifies 11 initial learning
trials with a retention test at 24 h, etc) were tested for retention
24 h after initial training, and one group (160L0 signifying 160
initial learning trials with a retention test at 0 h 5 min) was
tested 5 min after initial training as a control. Figure 2C shows the
time course of the initial adaptation during the null-field baseline
trials and initial learning period for all five subject groups. The
adaptation coefficient (the slope of the linear regression of
the actual human-produced lateral force pattern onto the pat-
tern that would be ideal for counteracting the force-field
environment, see METHODS and A and B of Fig. 2) is plotted
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FIG. 4. Summary of experimental results. In each panel, vertical lines represent the SE; horizontal bars mark where there is a significant difference between
groups at the level described in the legend. A: adaptation achieved at the end (last 10%) of the learning period for the 4 long-term retention groups. B: retention
of adaptation 24 h after testing for the 4 groups. C: percent retention (amount of retention after 24 h divided by the amount of adaptation at the end of testing)
for the 4 groups. The gray trace represents the percent retention predicted from the multi-rate learning model for each training period using the alpha and beta
from the previous fit. The close correspondence (R2 � 0.98) between the percent retention data, and this prediction suggests that this model has the ability to
predict not only the overall retention level but the amount of forgetting as well.
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FIG. 3. Comparison of experimentally
observed retention levels and predictions
of a multi-rate model of short-term motor
adaptation. The multi-rate model posits
that 2 adaptive processes with different
time courses combine during short-term mo-
tor adaptation. The learning curves for these
individual processes and their sum are dis-
played-fast process (orange), slow process
(blue), and the net adaptation level (black)
achieved by the combination of these 2 pro-
cesses. A: comparison of retention levels and
the evolution of slow process: the blue
dashed line shows the learning curve for the
slow process scaled down to match the re-
tention level 24 h after 160-trial training.
Note the ability of this curve to predict the
retention levels at 11, 30, and 103 trials.
There is a significant linear relationship be-
tween retention level and the slow process
level reached during training (R2 � 0.99,
P � 10�4). B and C: comparison of retention
levels with the evolution of the fast process
and net learning levels, respectively. Note
the relative ability of the dashed orange and
dashed black curves to predict the retention
levels at 11, 30, and 103 trials. D: retention
as a function of slow process level reached.
The data from A are replotted to show reten-
tion levels as a function of predicted slow-
process learning rather than as a function of
time. Note the near-linear relationship in the
data. E and F: retention as a function of the
fast process level reached and as a function
of net learning, respectively. Note the non-
linear relationships in the data.
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along the ordinate and trial number on the abscissa. As shown
in the figure, all of the groups effectively learned the force-
field, and with increased training (more trials), adaptation was
further increased. The data show a rapid phase of adaptation
during the first 10–15 trials and then a slower, more prolonged
improvement. The three groups with the longest training peri-
ods (103L24, 160L24, and 160L0-blue, cyan, and green traces)
reached the highest adaptation coefficients-�80% of the ideal
force-field compensation as shown in Fig. 2C.

This result is further demonstrated in Fig. 2D, which shows
the average lateral force patterns measured during error-clamp
trials at the end (last 10%) of the learning period. All five
groups produced lateral force profiles that approached the
desired force profile (which is the opposite of the robot-applied
force profile) by the end of the learning block; however, groups
160L0, 160L24, and 103L24 displayed nearly identical force
compensation profiles that are all slightly greater than those
displayed by the 30L24 and 11L24 groups.

The average force profiles during the retention testing (5-
min or 24-h break) are displayed in Fig. 2E. The 160L0 group
(green trace) displays only a small decrease from the corre-
sponding late-learning force profile when tested for retention 5
min after the learning period. However, the retention force
profiles obtained 24 h after testing (160L24 group, cyan trace)
differ markedly from those produced at the end of the learning
period (160L0 group, green trace). All groups demonstrate a
decrease in the force profile with the largest difference between
learning and retention occurring for the group with the least
amount of training, the 11L24 group. The force profiles dis-
played in Fig. 2, D and E, show the overlearning effect: with
increased training in the motor adaptation task there is in-
creased retention.

The relationship between learning and retention for each
group is shown more explicitly in Fig. 3 in which we quantified
the level of 24-h retention for each group. Our hypothesis was
that if 24-h retention depended chiefly on the level of the slow
learning state in our multi-rate learning, one would expect that
the 160L24 group, which through the longer learning period
allowed the slow learning state to reach a higher level, would
show greater retention than the 103L24, 30L24, and 11L24
groups. This prediction appears to hold in our data (Fig. 3A).
This panel displays the adaptation coefficients for the 24-h
retention data alongside simulations of our multi-rate learning
model of short-term motor adaptation. In this model, a fast
(orange trace) and slow (blue trace) learning process combine
to produce the overall motor adaptation (black trace). We
scaled the raw model output (values of slow state, fast state,
and net learning at 160 trials of training) to the retention level
obtained after 24 h for 160 trials of training (160L24 group),
resulting in three different predictions for the pattern of reten-
tion following varying degrees of overlearning shown in A–C.
The blue dashed line in Fig. 3A shows the retention pattern
predicted by our multi-rate rate if the slow learning process
serves as the gateway to long-term retention. The average
levels of retention exhibited by the 103L24, 30L24, and 11L24
groups are well accounted for by this prediction (R2 � 0.99,
P � 10�4). This was not the case for predictions made by a
model where the fast process (orange dashed line in Fig. 3B) or
the total initial adaptation level (black dashed line in Fig. 3C)
lead directly to long-retention. This suggests that long-term
retention is not strongly related to these parameters.

To examine this hypothesis in greater detail, we plotted the
predicted level of the slow learning process at the end of the
initial training period against the amount of retention obtained
by each group in our study (Fig. 3D). This plot shows that the
groups tested for retention following a 24-h break display
remarkably similar amounts of retention with respect to the
amount of slow system learning achieved in the initial training
period, i.e., all groups retain �65% of the initial slow process
learning 24 h later. In contrast, neither the fast process alone
(Fig. 3E) nor the overall learning level (F) show a constant
percentage of retention. The retention proportion ranges widely
from 20 to 50% of the overall learning level and from 35 to
400% of the fast process level but narrowly from 60 to 70% of
the slow process level.

To quantify the relationship between 24-hour retention and
levels of the individual learning processes we fit the following
simple model to our retention data LTR � � �xf(n) � � �xs(n).
Here xf(n) and xs(n) represent the levels of the fast and slow
learning processes for a given number of initial learning trials,
n (see METHODS). Note that the parameters of this model, � and
�, represent the specific contribution that each learning process
makes toward long-term retention after 24 h, LTR. We fit this
model with a simple linear regression to the group average
retention data [R2 	0.99, F(2,2) � 10,020, P � 10�4] and to
all of the individual subject 24-h retention data [R2 � 0.78,
F(2,36) � 65.2, P � 10�6], and found that while the contri-
bution of the slow learning process, �, was significantly dif-
ferent from 0 (95% confidence intervals, 0.49 
 0.055), the
contribution of the fast learning process, �, was not (95%
confidence intervals, 0.052 
 0.13). This suggests that the slow
learning process contributes to long-term retention but the fast
learning process does not, in agreement with the results dis-
played in Fig. 3.

Figure 4 summarizes the results of this study. The adaptation
levels achieved near the end (last 10%) of the learning period
for the four long-term retention groups are displayed in A.
There are significant differences (P � 0.002) between the
groups that experienced extensive training (160L24 and
103L24) and those experienced more limited training (30L24
and 11L24). The amount of retention of the motor adaptation
for each group is shown in Fig. 4B. Similar to the results
presented in panel a, the duration of training had a significant
effect on the amount of adaptation retained; the 160L24 and
103L24 groups retained significantly more of the adaptation
than the 30L24 and 11L24 groups (P � 0.009 in both cases).
The percent retention (amount of retention after 24 h relative to
the amount of adaptation at the end of training) is shown in Fig.
4C. Note that if recall were proportional to the total amount of
initial learning (as in the predictions presented in Fig. 3, C and
F) rather than to the level of the slow process, the percent recall
would be held constant across groups. Remarkably, the two
groups with the longest initial training periods, 160L24 and
103L24, show not only greater overall retention than the 11L24
group but also retain a greater percentage of their initial
learning (P � 0.006 and P � 0.025, respectively). Note that the
percent retention displayed by each group closely matches that
predicted from our two-state model shown as the gray line
using the alpha and beta found in the previous paragraph in
Fig. 4C (R2 � 0.98), suggesting that this model has the ability
to predict not only the overall retention level but the amount of
forgetting as well.

2953LONG-TERM RETENTION OF MOTOR ADAPTATION

J Neurophysiol • VOL 100 • NOVEMBER 2008 • www.jn.org

 on N
ovem

ber 10, 2008 
jn.physiology.org

D
ow

nloaded from
 

http://jn.physiology.org


D I S C U S S I O N

This work investigated the processes involved in the evolu-
tion of short-term learning to long-term memory. Our results
show that although the amount of 24-h retention is not well
determined by the overall amount of initial learning, it is
strongly related to that part of the initial learning accounted for
by a slowly evolving subcomponent of the learning process. In
our data, the level of this slow learning process on termination of
initial training session is by itself able to predict the pattern of 24-h
retention with an R2 of 99%. Furthermore, an extension of this
model that adds a factor for a possible contribution from the fast
learning process fails to significantly improve on this prediction.
This suggests that the two distinct learning processes that
underlie short-term motor adaptation contribute very differ-
ently to the long-term retention of motor memories—the slow
process contributes strongly, while the fast learning process
contributes weakly or not at all.

An extensive amount of theoretical and neurobiological
work has focused on the mechanisms by which short-term
motor memories are consolidated into a stable, enduring mem-
ory (Brashers-Krug et al. 1996; Nezafat et al. 2001; Shadmehr
and Brashers-Krug 1997; Shadmehr and Holcomb 1997). For
example, when subjects perform the same task used in this
study 24 h after initial training, their performance is signifi-
cantly improved over naı̈ve performance (Brashers-Krug et al.
1996). This 24-h recall is disrupted when transcranial magnetic
stimulation (TMS) is applied to the primary motor cortex prior
to the initial training, whereas the initial learning of the task is
comparable to control subjects (Richardson et al. 2006). Re-
tention of initial learning has also been demonstrated for eye
movement adaptation; 24 h after performing a gain reduction
task, saccadic eye movement gain remains significantly lower
than preadaptation gain (Alahyane and Pelisson 2005).

Here we have shown that the slow learning process provides
a gateway to long-term memory formation. The dynamics of
this slow process appear to determine the capacity for long-
term retention of motor learning and consequently the proper-
ties of the overlearning effect. While this slow process ac-
counts for as little as 10% of initial learning, it asymptotes at
a level that accounts for �80% of overall learning. Therefore
our model predicts that as training proceeds, both the amount
of retention and the fraction of learning will increase. On the
other hand, this model dictates when the slow learning process
will asymptote, and thus predicts when the overlearning effect
will saturate. Both of these predictions appear to be borne out
in the experimental results.

Other studies have also shown that there are multiple time
scales of learning during different types of motor adaptation
(Fusi et al. 2007; Kording et al. 2007; Robinson et al. 2006).
For example, the eye velocity of optokinetic nystagmus (in-
voluntary eye movements in response to continuous movement
of the visual field) is also characterized by two components: a
rapid rise followed by a slower increase to steady state (Cohen
et al. 1977). Interestingly, the rapid rise in eye velocity has
been shown to be affected by particular neural lesions (Zee
et al. 1987). The ability to disrupt specific time scales in the
learning of motor adaptation tasks similar to that used in this
study has been demonstrated (Della-Maggiore et al. 2004).
During learning, when TMS was applied over the posterior
parietal cortex, the initial rapid adaptation was unaffected,

whereas the later gradual increase in learning was significantly
reduced. Recently, imaging techniques have been used to
identify the neural networks associated with the different time
courses of learning during motor adaptation (Krakauer et al.
2004; Tunik et al. 2007). Together these results suggest that
subcomponents of the learning process with different learning
rates may be attributed to particular neural areas and opens the
possibility that these areas may be manipulated to impair or
enhance the formation of long-term motor memories.

On a more general note, this study shows that a simple
computational model of motor adaptation has the ability to
parse the overall performance in a learning task into one
component that determines the amount of long-term retention
and another component that does not. This ability may be a
powerful tool for the rational design of motor training and
rehabilitation paradigms that aim to maximize the long-term
benefit of individual training sessions. Our results suggest that
maximizing the long-term benefit of a training session does not
necessarily come from maximizing the overall level of learning
but rather from maximizing the amount of learning achieved by
a single constituent learning process–the slow process. While
the evolution of this slow component cannot be directly mea-
sured, it can be determined from computational modeling of
learning processes that is informed by intimate knowledge of
the interactions between them. This ability underscores the
potential power of a computational modeling approach to
create improved training procedures—such modeling can be
used to design training paradigms that aim to maximize the
efficiency for producing gains in the slow learning process as
an effective surrogate for long-term retention.
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